Feature Testing at Pega using
WebDriver, Ruby, RSpec &
Capybara

To do:

Add some links to tutorials and references on RSpec & Capybara, TDD & BDD.

Contents

INEFOTUCTION ...ttt ettt et e bt e s bt e e sttt e e bt e e sabb e e e bbeesabeeesnbeeeabeeesabbeesaneeesanaeesnnes 4
Getting Started on your computer with WebDriver, Ruby, RSpec & Capybara......ccccccceeeevcciviiiiieeeeeeeeeeenn, 4
RU DY ettt e e e e e e e e e et —— e e e e e eeeeeeeeaeta——————ettaaaeeaaaaaabta——taaeaaaaaeaeaaattttaaaaeeeaaaaeeaaaannnrrnn 4
A=Y o] B 4 V=Y O T T TP UUPOPPRTOTI 6

If you are WOrking With FIF@FOXuuuiiiiiiii ittt e e et e e e e e e e e e e e aaebrraereeaaaeeeeanns 6

If you are Working With CRIOMIEceciiii ittt e e e et e e e e e e e e e e e e aanbaaaereeaaaeeeenans 6

If YOU @re WOTKING WIth TEeeiiiiiiiiiieee et e e e e e e e e s e ettt e r e e e e e aaeeeeesansbsbaseseaaaesesanas 6

If you are Working With Safari.........eeeei i e e e e e e e e et rae e e e e aaeeeeaans 7
] =T oSO P R PPPPPRPPRE 8
(07T 01V o I=1 - TS UUR 10
Testing Mobile Browsers with WebDriver, Ruby, RSpec & Capybara............ Error! Bookmark not defined.
FAN o] ¢ 1101 o o T PP U PPPPP R OPPPP Error! Bookmark not defined.

F1Y oo [o] o I T PP U RO T SO PUPPPPTRO 18

1O YT O PP PPRPRPPPRRR Error! Bookmark not defined.
Feature Testing in Pega’s automated test enVIroNMENt ... 19
INTEErating WIth JENKINS.uuiiiiiiiii e e e e e e e e e e e e e e e e e s btbtaaeaeeaaaaeeeesnnnnsrenns 19
Integrating wWith Validation ENGINEc..uuuiiiiiiiii ettt e e e e e e e e e e ettt r e e e e e e e e e e e sesannnrenes 20

2T Al o = Yo { (ol =T RTN 20

Introduction

The combination of the WebDriver APl with Ruby, RSpec and Capybara lets you write powerful
automated tests for web applications. You can also test using only a subset of these tools, but they
provide more power and flexibility when used together.

Webdriver — is a protocol (or API) for controlling web browsers from other programs.
Ruby — is a popular scripting language

RSpec —is a framework for test driven development

Capybara — is a library for automated browser testing

The remainder of this document will show you how to create and run automated tests at Pega using
these tools.
* First we will discuss using them in your own development environment, with browsers on
Windows and Macintosh.
* Then we will add mobile browsers into the mix.
* Later we will discuss how to have your tests run as part of Pega’s automated test environment.
* Finally we will discuss best practices.

Getting Started on yvour computer with WebDriver, Ruby, RSpec &
Capybara

Note to Mac users — you will need administrative privileges to execute many of the commands below.
Your account must have those privileges by default, or you must be able to use the sudo command.

Ruby

Which version of Ruby to download? We recommend version 1.9.3 for Windows, and 2.1.1 for Mac.

Download and install Ruby from here:
https://www.ruby-lang.org/en/downloads/
Note that you may be directed to another site: rubyinstaller.org.

When installing Ruby, you may encounter some prompts:
* Tcl/Tk support — this is not needed.
* Add Ruby executables to path — this is recommended.

e Associate .rb and .rbw files — this is recommended.

Ensure that the ruby/bin directory is in your Path. For example, a typical installation on Windows will
result in a directory C:\Ruby193 and so you may need to add the following to your Path environment
variable:

C:\Ruby193\bin

See the screen shot below:

-
Environment Variables P— g

User variables for rogej

>

Variable Value

SAUCE_ACCESS... da8135f3-c185-4390-ba7b-35819072a...
SAUCE_USERNA... rogejatpega

TEMP %USERPROFILE%:\AppData\Local\Temp
TMP %USERPROFILE % \AppData\Local\Temp

m. |

1

| New.. || Edt. || Deete |

System variables

Variable Value ‘
0s Windows_NT B
Path C:\Ruby193\bin;C:\Pro... N
PATHEXT .COM; .EXE;.BAT;.CMD;.VBS;.VBE;.]S;....
PROCESSOR_A... AMD&4 e

[New...][Edit...][Delete]

LI‘_ [OK][Cancel] N

(...paragraph below not needed...)

Verify your ruby installed version by typing the following at the command line:
ruby --version
The response should be similar to:

ruby 2.0.0p481 (2014-05-08) [i386-mingw32]

Ensure your Ruby installation knows where to find additional downloadable modules by typing the
following at the command line:

gem sources -a http://rubygems.org/
If interested, explore these Ruby tutorials:

https://www.ruby-lang.org/en/documentation/quickstart/
http://www.tutorialspoint.com/ruby/ruby overview.htm

WebDriver

Install the ruby webdriver library by typing the following at the command line:

gem install selenium-webdriver

(Note the “gem” command is provided by the ruby installation.)

If you are working with Firefox

No special steps are necessary for Firefox.

If you are working with Chrome

Install a ruby library for using webdriver with Chrome by typing the following at the command line:
gem install chromedriver-helper
Download the chromedriver executable for either Windows or Mac:

http://chromedriver.storage.googleapis.com/2.10/chromedriver win32.zip

http://chromedriver.storage.googleapis.com/2.10/chromedriver mac32.zip

After the zip file is downloaded, install the driver by extracting the file chromedriver.exe and
placing it in your ruby/bin directory.

If you are working with [E

Download iedriverserver (either 32- or 64-bit version, as appropriate for your Windows version) from :

http://selenium-release.storage.googleapis.com/2.42/IEDriverServer Win32 2.42.0.zip
or
http://selenium-release.storage.googleapis.com/2.42/IEDriverServer x64 2.42.0.zip

After the zip file is downloaded, install the iedriverserver by extracting the file
IEDriverServer.exe andplacingitinyour ruby/bin directory.

Configure IE security settings as follows. Inside IE, open Internet Options, then select the Security tab:

-
Internet Options m

General | Security | privacy | Content | Connections | Programs | Advanced |

damage your computer or your files.

| e
@ This zone is for websites that might

There are no websites in this zone.

Security level for this zone

Custom

Custom settings.
- To change the settings, dick Custom level.
- To use the recommended settings, dick Default level.

< Enable Protected Mode (requires resiarting Internet Explorer)
“Customlevel... | | Defaultlevel |

[Reset all zones to default level]

@ Some settings are managed by your system administrator.

[OK] [Cancel Apply

Ensure that all zones have the same setting for the “Enable Protected Mode” checkbox. (Shouldn’t
matter whether enabled or disabled, as long as all zones are the same).

If you are working with Safari

No special steps are necessary for Safari.

Additonal Information

Good documentation on WebDriver can be seen here:

http://docs.seleniumhg.org/docs/03 webdriver.jsp

Good information about using WebDriver from Ruby can be found here:
http://code.google.com/p/selenium/wiki/RubyBindings

RSpec

Install RSpec by typing the following at the command line:
gem install rspec

Verify your RSpec installed version by typing the following at the command line:
rspec --version

The response should be similar to:
3.0.0

Be sure you have RSpec version 3 or later.

Create a sample test — use any text editor to save the following text into a file called “shakespeare.rb”,
in the directory of your choice:

Open google.com, search for 'shakespeare', look for 'Anne Hathaway'

require 'rspec’
require 'selenium-webdriver’

browser = Selenium::WebDriver.for :ff

RSpec.configure do |config]|
config.before(:each) { @browser = browser }
config.after(:suite) { browser.quit unless browser.nil? }
end

describe "Simple demo of google search: " do
before(:each) do
@browser.navigate.to("http://google.com/")
sleep 1
end

context "When we have searched for shakespeare, " do
before(:each) do
@browser.find_element(:name, 'q').send_keys('shakespeare"')
@browser.find_element(:name, 'btnG').click
sleep(3)
end

it "should contain Anne Hathaway" do
expect(@browser.page_source).to include("Anne Hathaway")
end
end
end

The above example will try to use Firefox. If you prefer Chrome, on line six change the “ff” to
“chrome”. If you prefer Internet Explorer, change the “ff” to “ie”. If you prefer Safari, change the “ff”
to “safari”.

Type the following at the command line:

rspec shakespeare.rb

Your browser should open and end up showing a results page like so:

g shakespeare - Google Search

€ | 8 hitps://www.google.com/search?q=shakespeare8iie=utf-8&oe=utf-8&a
GO 8[6 shakespeare

Web Images Books News Videog

About 33,600,000 results (0.25 seconds)

William Shakespeare - Wikipedia, the
en.wikipedia.org/wiki/William_Shakespeare v Wiki
William Shakespeare nb 1] was an English poet, pls

ier in the English language and the
waway - Shakespeare's plays - Hamnet Shz

And your console window should show the following:

C:\>rspec shakespeare.rb

Finished in 6.96 seconds (files took 8.02 seconds to load)
1 example, @ failures

For more information about RSpec, refer to the following tutorials and book:
* http://code.tutsplus.com/tutorials/ruby-for-newbies-testing-with-rspec--net-21297
* http://blog.teamtreehouse.com/an-introduction-to-rspec
* http://pragprog.com/book/achbd/the-rspec-book

Capybara

Install the ruby capybara library by typing the following at the command line:
gem install capybara

Create a sample test — use any text editor to save the following text into a file called “shakespeare2.rb”:

Open google.com, search for 'shakespeare', look for 'Anne Hathaway'

require 'capybara’
require 'selenium-webdriver’
require 'capybara/rspec’

Capybara.default_driver = :selenium
Capybara.register_driver :selenium do |app]|
Capybara::Selenium: :Driver.new(app, :browser => :ff)

end

RSpec.configure do |config]|
config.include Capybara::DSL

end
describe "Simple demo of google search: " do
before(:each) do
visit("http://google.com/")
sleep 1
end
context "When we have searched for shakespeare, " do
before(:each) do
fill_in('q', :with => 'shakespeare')
find(:css, '[name="btnG"]"').click
sleep(3)
end
it "should contain Anne Hathaway" do
expect(page).to have_content('Anne Hathaway')
end
end
end

The above example will try to use Firefox. If you prefer Chrome, on line ten change the “ff” to
“chrome”. If you prefer Internet Explorer, change the “ff” to “ie”. If you prefer Safari, change the “ff”
to “safari”.

Type the following at the command line:
rspec shakespeare2.rb

Your browser should open and end up showing a results page like so:

shakespeare - Google Search

6 @ https://www.google.com/search?q=shakespeare&ie=utf-8&ce=utf-8&a

GO‘..) gle shakespeare

Web Images Books News Videos

About 33,600,000 results (0.25 seconds)

William Shakespeare - Wikipedia, the
en.wikipedia.org/wiki/William_Shakespeare ~ Wiki
William Shakespeare nb 1] was an English poet, pls

ier in the English language and the
waway - Shakespeare's plays - Hamnet Shz

And your console window should show the following:

C:\>rspec shakespeare2.rb

Finished in 6.96 seconds (files took 8.02 seconds to load)
1 example, © failures

For more information about Capybara, refer to the following tutorials and book:
* http://jnicklas.github.io/capybara/
* https://github.com/jnicklas/capybara
* http://www.amazon.com/Application-Testing-Capybara-Matthew-Robbins/dp/1783281251

RSpec output format

RSpec can generate output in a few different formats.

Default “Progress” Format

By default, it uses the “progress” formatter, which generates output in the form of an ASCII progress bar
on the standard output. It looks like this:

o[Foooolfooono

Eeach ‘.’ represents a passing test, each ‘F’ is a failing test. So in the above example, there are a total of
fourteen tests, with twelve successes and two failures. Were there only a single test, you would see
only a single dot or a single ‘F’.

HTML Format

RSpec can also generate output in HTML format. This is enabled by supplying the “--format html”
command-line option.

Below is an example of HTML output format, where all (two of two) tests are passing:

[RSpec results

~ = C [filey///C;/Users/rogej/Documents/rspecTests2/rspec_out.html
i Apps [TnGSDE [Activate X-Ray Gog.. [The Architecture of ...

2 examples, 0 failures
Finished in 13.35200 seconds

RSpec Code Examples

% Passed @ Failed @ Pending
assignmentOpener

I accepts a key 0.03800s

I shows assignment ID 2.64200s

And here is an example of HTML output format from the same test, but where one of two tests is failing:

[| - =S

|) RSpec results x '\,L
C' [filei///C:/Users/rogej/Documents/rspecTests2/rspec_out.html oy =
' 2 Apps |3 TnGSDE [Activate X-Ray Geg... [] The Architecture of ...

RSpec Code Examples -

¥ Passed @ Failed @ Pending

assignmentOpener

I accepts a key 0.04000s
shows assignment ID 2.45225s
expected "<!DOCTYPE html><html xmlns=\"http://www.w3.0rg/1995/xhtml\" lang=\"en-US\" clas:

./assignment_opener no_leoop.rb:37:in “block (2 levels) in <top (required)>'

35 sleep($waitTime)

36

37 expect($driver.page source).to include ("W-972x")
38

39 # closes the tab

40

7

Testing in Mobile Browsers using Appium

Appium provides an implementation of the WebDriver protocol for mobile browsers. Using Appium,
you are able to take the same WebDriver automation scripts that work with desktop browsers, and run
those scripts targeting Safari on a USB-tethered iPad or iPhone, or targeting Chrome on a USB-tethered
Android device. On a Mac you can also target the iOS Simulator provided with the Xcode development
tools.

The test scripts can be written using Ruby, WebDriver, RSpec, and Capybara — in addition to other tools.

Appium is available for either Mac or Windows. On Windows it can be used to test USB-tethered
Android devices. On Mac it can be used to test USB-tethered iOS devices and Android devices.

The Appium application is available in two forms:

* An app written in Node.js, and run with the “node” command.

* A packaged GUI application that bundles everything required, including Node.js.
Either form can be used. The version run with the “node” command is about 10% faster, and the
packaged GUI app can consume significant memory.

Follow the steps below to configure a Mac for testing on tethered iOS devices using Ruby, WebDriver,
RSpec, Capybara, and Appium.

(Much of the following summarized from:
https://qithub.com/appium/ruby console/blob/master/osx.md
Refer to that document for more detailed steps.)

Ensure your Mac is running OS X 10.9.2 or better.
Install Xcode 5.1.1. (Do not use an older version.)
Install Xcode command-line tools. (Xcode = Open Developer Tools 2 More Developer Tools). See also:

(http://docwiki.embarcadero.com/RADStudio/XE4/en/Installing the Xcode Command Line To
ols on a Mac)

Install Java 7 from here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Download and install Ruby 2.1.1 from here:
https://www.ruby-lang.org/en/downloads/
Note that you may be directed to another site: rubyinstaller.org.

For more details, refer to the earlier section on installing ruby.

Update RubyGems and Bundler

$ gem update --system ;\

$ gem install --no-rdoc --no-ri bundler ;\
$ gem update ;\

$ gem cleanup

Ensure RubyGems version is >= 2.1.5

$ gem --version
2.1.5

Install appium_lib & appium_console gems

$ gem uninstall -aIx appium_lib ;\
$ gem uninstall -aIx appium_console ;\
$ gem install --no-rdoc --no-ri appium_console

Download and Install the Appium Mac app from http://appium.io.

Launch Appium.

Configure Appium as shown below.

8 00

LA N 2P kS

iOS Settings
Application
V! App Path: /Users/jeffrogers/Library/Developer/Xcode/DerivedData Choose

BundlelD @Use Mobile Safari

Device Settings

™ Force Device | iPad Platform Version
12] Force Orientation | Landscape Force Language
Force Calendar gregorian | Force Locale
ubID
Full Reset No Reset @Show Simulator Log
Advanced
|| Use Native Instruments Library | | Force Kill Unresponsive Instruments Processes
|| Backend Retries 3 || Instruments Launch Timeout

| | Trace Template Path

Xcode Path | Change | [} Macintosh HD (i Applications »(j Xcode |

Start the Appium server by clicking the “Launch” button.

Create a sample test — use any text editor to save the following text into a file called “shakespeare3.rb”:

Open google.com, search for 'shakespeare', look for 'Anne Hathaway' in result

require 'capybara'

require 'capybara/dsl’
require 'selenium-webdriver'
require 'capybara/rspec’
require 'appium_lib'

Capybara.register_driver :ipad do |app|

caps = {
:platform => 'Mac’,
:deviceName => 'iPad',
:platformName => "iOS',
:platformvVersion => '7.1",
tapp => 'safari’

}

Capybara::Selenium: :Driver.new(app, {
:browser => :remote,
:url => "http://localhost:4723/wd/hub/",
:desired_capabilities => caps

1)

end
Capybara.default_driver = :ipad

RSpec.configure do |config]|
config.include Capybara::DSL
end

describe "Simple demo of google search: " do
before(:each) do
visit "http://google.com/"
sleep 1
end

context "When we have searched for shakespeare, " do
before(:each) do
fill in('q', :with => 'shakespeare')

begin
click_button('Search') # mobile
rescue
find(:id, ‘'tsbb').click # mobile-simulator
end
sleep(3)

end

it "result contains Anne Hathaway" do
expect(page).to have_content('Anne Hathaway')

end

end
end

Type the following at the command line:

rspec shakespeare3.rb
The i0S simulator should launch, and inside that mobile safari should launch. It should go to
google.com, search for “shakespeare”, and then show the result briefly. Then the simulator will close.

Your console window should show something like the following:

$ rspec shakespeare3.rb

Finished in 34.96 seconds (files took ©.42163 seconds to load)
1 example, O failures

To test on a real iOS device

Install ios_webkit_debug_proxy on your Mac, from:
https://github.com/google/ios-webkit-debug-proxy

Get new version of SafariLauncher.zip from:
https://dl.dropboxusercontent.com/u/72075315/Appium.zip

Get & save the UDID of your iOS device:

(Adapted from: http://bjango.com/help/iphoneudid/)

Every iPhone, iPod touch and iPad has a unique identifier number associated with it, known as a
UDID (Unique Device ID). Your UDID is a 40-digit sequence of letters and numbers that looks like
this: 0e83ff56a12a9cf0c7290cbb08ab6752181fb54b. It's common for developers to ask for your
UDID as they require it to give you beta copies of iOS apps.

Finding your UDID using iTunes

* OpeniTunes (the Mac or PC app, not iTunes on your iPhone).

* Plugin your iPhone, iPod touch or iPad.

* Click its name under the devices list.

* Ensure you're on the Summary tab.

* Click on the text that says Serial Number. It should change to say Identifier (UDID).
* Select Copy from the Edit menu.

* Your UDID is now in the clipboard, so you can paste it into an email or message.

Ensure your iOS device is connected to your Mac via USB cable.

Ensure ios_webkit debug proxy isrunning on mac on port 27753, using the following command:
$ ios_webkit_debug proxy -c <udid>:27753 -d

where <udid> is the UDID of your iOS device.

Stop the Appium server by clicking the “Stop” button.

Configure Appium as shown below. (Note: only the UDID checkbox and field differ from the previous
screen shot.) Fill in the UDID from your iOS device.

e OO0 Appium

LI L A S (R][J{ taunch

iOS Settings

Application

V! App Path: /Users/jeffrogers/Library/Developer/Xcode/DerivedData Choose
BundlelD @] Use Mobile Safari
Device Settings
™ Force Device |iPad v Platform Version |7.1 %
@ Force Orientation |Landscape v _| Force Language en
Force Calendar gregorian _| Force Locale en_US

M UDID |0420de24e7449aa92e467d5d11341972964804a6
Full Reset |_I No Reset (M Show Simulator Log
Advanced
Use Native Instruments Library | | Force Kill Unresponsive Instruments Processes
Backend Retries 3 [_|Instruments Launch Timeout 90,000 ms

Trace Template Path Choose

Xcode Path Change | [} Macintosh HD (3 Applications > Xcode |

Start the Appium server by clicking the “Launch” button.
Run the same test as last time, by typing the following at the command line:

rspec shakespeare3.rb
On your tethered iOS device, you will see a program called “SafariLauncher” start, then it will switch to
Safari. Safari will load and pause for a few seconds, then it should go to google.com, search for
“shakespeare”, and then show the result briefly. Then the browser page will close. Your console

window should show something like the following:

$ rspec shakespeare3.rb

Finished in 54.96 seconds (files took 0.42163 seconds to load)
1 example, 0 failures

Android

To be added....

Using WebDriver Across a Network

When you have a webdriver instance (like Appium) running, you can control it from a separate machine
on the network. For example, you can run Appium on a Mac, then run a ruby test on a PC, and have that
ruby test talk to Appium on the Mac to control a browser on an iPad which is tethered to that Mac.

PC | < Mac el iPad

=

Af[’

TSond

Test ‘“\ o

LBV eY
.7 ‘F- (Vet e e ——

Below are some ruby code fragments showing how to (a) initiate a test on a local browser, versus (b)
initiate a test on a remote computer somewhere on the network. (The remote computer will in turn run
the test on either [i] a device simulator, or [ii] a USB-tethered device, depending on how Appium is
configured on that remote computer.)

Let’s assume Appium is running on a Mac at IP address: 10.88.90.122.

If you are using Capybara and RSpec:

Local firefox
browser = Selenium::WebDriver.for :ff

Remote safari

browser = Selenium::WebDriver.for :remote,
curl => "http://10.88.90.122:4723/wd/hub",
:desired_capabilities => :safari

If you are using RSpec without Capybara:

Local firefox
Capybara::Selenium: :Driver.new(app, :browser => :ff)

Remote safari

Capybara: :Selenium: :Driver.new(app,
:browser => :remote,
:url => "http://10.88.90.122:4723/wd/hub"”,
:desired_capabilities => :safari)

Executing tests containing either of these remote Ruby fragments will cause Appium on the Mac to
launch a browser and then the Ruby code will drive that browser. Whether that browser launches on a
tethered device, or in a simulator, depends on how Appium is configured on the Mac.

If two or more people try to run tests at the same time on the same remote machine, the first person
wins. While a test is in progress, all other requests will fail with an error message that contains the
following:

A new session could not be created. (Original error: Requested a new session but one was in
progress)

Feature Testing in Pega’s automated test environment

Integrating with Jenkins

To be added....

Integrating with Validation Engine

To be added....

Best Practices

Test Directory Structure

Recommended test directory structure shown below:

myTestDir/

test _1.rb

test _2.rb

runtest.bat

runtest.sh

spec/
spec_helper.rb
shared_context_1.rb
shared_context_2.rb

Descriptions:

myTestDir — holds test source files, test runner scripts, and subdirectories
test_n.rb—an RSpec test source file

runtest.bat & runtest.sh - scripts for Windows and Unix which can take in a variety of
command-line arguments and assign them to environment variables, then execute tests via the “rspec”
command.

spec/ -- a directory to hold a variety of helper files.

spec_helper.rb—a helper file that is automatically included by RSpec in all tests executed.
shared_context_n.rb—an RSpec shared context file, to hold common utility methods

How Tests are Identified

Tests in RSpec can be identified in a number of different ways.
1. By source file and/or directory name
2. By line number within a source file
3. Bytest name
4. Bytag

Generally the most useful mechanisms are test name and tag.

Consider an RSpec source file structured as shown below:

describe “feature under test” do
context “in situation A” do
it “meets acceptance criterion A1” do
end
it “meets acceptance criterion A2” do
end
end
context “in situation B” do
it “meets acceptance criterion B1” do
end
it “meets acceptance criterion B2” do
end
end
end

This source contains four distinct tests, each with a distinct name. Each test name is the concatenation
of the strings that are supplied at each layer of the hierarchy: describe, context, and it. In this case the

test names are:
feature under test in situation A meets acceptance criterion Al
feature under test in situation A meets acceptance criterion A2
feature under test in situation B meets acceptance criterion Bl
feature under test in situation B meets acceptance criterion B2

Each test, or a group of tests, can be identified by its full name or any substring that occurs within the
name. So “criterion A1” will identify exactly one test, and “situation B” will identify two tests.

Now, consider the same RSpec source file, but with some tags added, as shown below:

describe “feature under test” do

context “in situation A” do
it “meets acceptance criterion A1” do
end
it “meets acceptance criterion A2” :quarantine do
end

end

context “in situation B” do

it “meets acceptance criterion B1” :quarantine do
end
it “meets acceptance criterion B2” do
end
end
end

This source contains the same four tests, but now two of them are marked with the “:quarantine”
tag. This provides a way for us to tell RSpec to exclude those tests from execution.

RSpec command-line options

The most useful command-line options are:

--out myOutputFile.html to specify the name of the output file.
--format html to generate HTML-formatted output.
--example 'string' to run tests whose names contain “string”
--tag ~myTag to exclude tests marked with “myTag”

In typical real-world usage, you will combine many options in a single command. For example, the
command below will look for tests in a file called "myTestFile.rb", and will run those tests whose names
contain the strings "shows" or "accepts", except those marked with the tag "quarantine". It will format
the test output as HTML and will save that output in a file called "rspec_out.html".

rspec myTestFile.rb --example "shows" --example "accepts"
--tag "~quarantine" --format html --out rspec_out.html

Additional command-line options are described below.
To run all tests in all files in current working directory:
rspec .
To run tests in a specific file:
rspec myTest.rb
To run all tests in multiple files:
rspec filel.rb file2.rb
To run all tests in all files in multiple directories:
rspec pathl path2
To run all tests in all files in a specific directory:
rspec --default-path /my/desired/path/
To redirect output from STDOUT to a file:

rspec . --out myOutputFile.txt

To change format of output to list each test and result on a separate line:

rspec . --format documentation
rspec . --format html

To run tests in all files whose names match a pattern:
rspec --pattern "spec/**/*_spec.rb"

To run only some examples (i.e., describe/context/it strings), where the full nested name includes a
certain string:

rspec . --example 'one string’

To run only some examples (i.e., describe/context/it strings), where the full nested name includes either
of two specific strings:

rspec . --example 'one string' --example 'another string'
To run tests marked with a specific tag:
rspec . --tag myTag
To run tests marked with a specific tag which has a specific value:
rspec . --tag myTag:myValue
To exclude tests marked with a specific tag, use the tilde:

rspec . --tag ~myTag
rspec . --tag ~myTag:myValue

To run tests marked with myTagl but exclude any also marked myTag2:

rspec . --tag myTagl --tag ~myTag2
rspec . --tag myTagl:myValuel --tag ~myTag2:myValue2

More Best Practices

Keep Descriptions Short

A spec description should never be longer than 40 characters. If this happens, it suggests you should
split it using a context (some exceptions are allowed).

bad

it "has 422 status code if an unexpected param will be added" do
response.is_expected.to respond_with 422

end

good
context "when not valid" do

it { is_expected.to respond_with 422 }
end

Use Expect instead of Should syntax

bad
it 'creates a resource' do

response.should respond_with_content_type(:json)
end

good
it 'creates a resource' do

expect(response).to respond_with_content_type(:json)
end

Configure Rspec to only accept the new syntax on new projects, to avoid having the two syntaxes all
over the place.

good
spec_helper.rb
RSpec.configure do |config]|

...
config.expect_with :rspec do |c|
c.syntax = :expect
end
end

On one line expectations or with implicit subject we should use is_expected.to.

bad
context 'when not valid' do

it { should respond_with 422 }
end

good
context 'when not valid' do

it { is_expected.to respond_with 422 }
end

Use Contexts

Contexts are a powerful method to make your tests clear and well organized. In the long term this
practice will keep tests easy to read.

bad

it "should have 200 status code if logged in" do
response.should respond_with 200

end

it "should have 401 status code if not logged in" do
response.should respond_with 401

end

good

context "when logged in" do

it { should respond_with 200 }
end
context "when logged out" do

it { should respond_with 401 }
end

(Over)use Describe and Context

Big specs can be a joy to play with as long as they are ordered and DRY. Use nested describe and context
blocks as much as you can, each level adding its own specificity in the before block.

To check your specs are well organized, run them in ‘nested’ mode (spec spec/my_spec.rb -cf nested).

Using before(:each) in each context and describe blocks will help you set up the environment without
repeating yourself. It also enables you to use it {} blocks.

Bad:
describe User do

it "should save when name is not empty" do
User.new(:name => 'Alex').save.should == true
end

it "should not save when name is empty" do
User.new.save.should == false
end

it "should not be valid when name is empty" do
User.new.should_not be_valid
end

it "should be valid when name is not empty" do
User.new(:name => 'Alex').should be_valid
end

it "should give the user a flower when gender is W" do
User.new(:gender => 'W').present.should be_a Flower
end

it "should give the user a iMac when gender is M" do
User.new(:gender => 'M').present.should be_an IMac
end
end

Good:

describe User do
before { @user = User.new }

subject { @user }
context "when name empty" do
it { should not be_valid }
specify { @user.save.should == false }

end

context "when name not empty" do

before { @user.name = 'Sam' }

it { should be_valid }
specify { @user.save.should == true }
end

describe :present do
subject { @user.present }

context "when user is a W" do
before { @user.gender = 'W' }

it { should be_a Flower }
end

context "when user is a M" do
before { @user.gender = 'M' }

it { should be_an IMac }
end
end
end

One Expectation Per Test

The "one expectation" tip is more broadly expressed as "each test should make only one assertion." This
helps you on finding possible errors, going directly to the failing test, and to make your code readable.

Note: keep in mind that single expectation test does not mean single line test.

bad

it "should create a resource" do
response.should respond_with_content_type(:json)
response.should assign_to(:resource)

end

good
it { should respond_with_content_type(:json) }
it { should assign_to(:resource) }

Use subject

When you have several tests related to the same "subject" you can use the subject{} method to DRY
them up. (DRY = Don't Repeat Yourself)

bad

it { assigns("message").should match /The resource name is Genoveffa/ }
it { assigns("message").should match /it was born in Billyville/ }

it { assigns("message").creator.should match /Claudiano/ }

good

subject { assigns("message") }

it { should match /The resource name is Genoveffa/ }
it { should match /it was born in Billville/ }
its(:creator) { should match /Claudiano/ }

Start contexts with "when" or "with"

Have you ever get a failed test with an incomprehensible error message like:

User non confirmed confirm email wrong token should not be valid

Start your contexts with "when" or "with" and get nice messages like:

User when non confirmed when confirm_email with wrong token should not be valid

Test Valid, Edge and Invalid cases

This is called Boundary value analysis, it’s simple and it will help you to cover the most important cases.
Just split-up method’s input or object’s attributes into valid and invalid partitions and test both of them
and there boundaries. A method specification might look like that:

describe "#month_in_english(month_id)" do
context "when valid" do
it "should return 'January' for 1" # lower boundary
it "should return 'March' for 3"
it "should return 'December' for 12" # upper boundary
context "when invalid" do
it "should return nil for ©"
it "should return nil for 13"
end
end

Run specs to confirm readability

Always run your specs with the ‘—format’ option set to ‘documentation’ (in RSpec 1.x the —-format
options are ‘nested’ and ‘specdoc’)

$ rspec spec/controllers/users_controller_spec.rb --format documentation

UsersController

#create

creates a new user

sets a flash message

redirects to the new user's profile
#show

finds the given user

displays its profile
#show.json

returns the given user as JSON
#destroy

deletes the given user

sets a flash message

redirects to the home page

Continue to rename your examples until this output reads like clear conversation.

Formatting

Use ‘do..end’ style multiline blocks for all blocks, even for one-line examples. Further improve
readability with a single blank line between all blocks and at the beginning and end of the top level
#describe.

Again compare:

describe PostsController do
describe "#new' do
context 'when not logged in' do

subject { response }
it { should redirect_to(sign_in_path) }
its(:body) { should match(/sign in/i) }
end
end
end

With the clearly structured code below:

describe PostsController do

describe '#new' do
context 'when not logged in' do

it 'redirects to the sign in page' do
response.should redirect_to(sign_in_path)
end

it 'displays a message to sign in' do
response.body.should match(/sign in/i)
end
end
end

end

A consistent formatting style is hard to achieve with a team of developers but the time saved from
having to learn to visually parse each teammate’s style makes it worthwhile.

Mark Incomplete Tests as Pending

Often it is helpful to insert a placeholder into your test suite for tests which you know you will need, but
have not yet written. RSpec calls these "pending" tests. This can be done in several ways.

It with no body

describe "an example" do
it "is a pending example"
end

It containing a pending statement

describe "an example" do
it "is implemented but waiting" do
pending("something else getting finished")
this_should_not_get_executed
end
end

It replaced by xit

describe "an example" do
xit "is pending using xit" do
true.should be(true)
end
end

Use the “Fail Fast” Option

You can often save a lot of time if you use the fail_fast option to tell RSpec to abort the run as soon as it
encounters any failure.

RSpec.configure {|c|
c.fail_fast = true

}

Identify tests (a.k.a. examples) to run by test name

Use the --example (or -e) option to filter the examples to be run by name.
The argument is compiled to a Ruby Regexp, and matched against the full
description of the example, which is the concatenation of descriptions of the

group (including any nested groups) and the example.

This allows you to run a single uniquely named example, all examples with
similar names, all the example in a uniquely named group, etc, etc.

For example, suppose you have a file "mySpec.rb" containing:

describe "first group" do
it "first example in first group" do; end
it "second example in first group" do; end

end

describe "second group" do
it "first example in second group" do; end
it "second example in second group" do; end

end

describe "third group" do
it "first example in third group" do; end
context "nested group" do
it "first example in nested group" do; end
it "second example in nested group" do; end

end
end

describe Array do
describe "#length" do
it "is the number of items" do
Array.new([1,2,3]).1length.should eq 3

end
end
end

Then the following commands should produce the output shown in the table below.

Command Output should contain

rspec . --example nothing_ like_this 0 examples, © failures
rspec . --example example 7 examples, © failures
rspec . --example 'first example’ 4 examples, © failures
rspec . --example 'first example in first group'’ 1 example, O failures
rspec . --example 'first group first example in first group' | 1 example, © failures
rspec . --example 'first .* first example’ 1 example, O failures
rspec . --example 'first group’ 2 examples, O failures
rspec . --example 'second group first example'’ 1 example, O failures
rspec . --example 'third group’ 3 examples, O failures
rspec . --example 'Array#length' 1 example, O failures

More To be added....

